
J. Fluid Mech. (2002), vol. 471, pp. 71–106. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002001994 Printed in the United Kingdom

71

Chaotic dynamics in a strained rotating flow:
a precessing plane fluid layer
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The nonlinear dynamics exhibited by a planar layer of precessing fluid is examined
as a canonical example of a strained rotating flow. The simple basic flow, U basic =
−Y X̂+(X−2εZ)Ŷ in a frame rotating at εX̂ , consists of sheared circular streamlines
(where ε measures the shearing) which are linearly unstable through the pairwise
resonance of two inertial waves in a fashion similar to elliptical flow. Direct numerical
simulation shows that the weakly nonlinear regime is quickly disrupted by further
instabilities which lead to a multitude of co-existing solution branches, some of which
represent chaotic flows. All these solutions remain within O(ε) (in an energy norm) of
U basic so that energy is not apparently withdrawn from the fluid’s underlying rotation.
Further increases in the precession rate cause the flow to branch-switch randomly
between these now quasi-stable states so that a new form of ‘slow’ dynamics emerges.
The implication of this and the fact that these instabilities can nevertheless be classed
as ‘strong’ is discussed from the perspective of the closely related problem of the
precessing Earth and laboratory models thereof.

1. Introduction
Rotating flows are rarely uniform in Nature. Typically, external boundary conditions

induce strains on the flow so that the circular fluid streamlines become distorted.
These asymmetries can drive strong inertial instabilities which have been observed to
lead to turbulent breakdown. One particular example of this phenomenon – ‘elliptical’
flow – has been studied extensively. The linear instability of elliptical streamlines was
discovered simultanously in the contexts of a strained vortex (Moore & Saffman 1975)
and a rotating fluid-filled triaxial ellipsoid (Gledzer et al. 1974, 1975), and is now well
understood (Kerswell 2002); however, efforts to understand the nonlinear evolution of
the instability have been hampered by the absence of a natural situation to simulate
numerically. The obvious choice of studying elliptical flow in a plane layer is not
available unless compromises are made to enforce periodicity (Lungren & Mansour
1996). Dealing with more appropriate open flows (Laporte & Corjon 2000) or elliptical
geometries (Mason & Kerswell 1999) has necessarily limited what can be learnt owing
to the increased numerical overhead. As a result, many questions still remain about
the nonlinear evolution of strained rotating flows beyond the initial instability. The
presence of secondary instabilities is now accepted after the corroboration of theory
(Kerswell 1999) by numerical simulation (Mason & Kerswell 1999) and experiment
(Eloy, Le Gal & Le Dizès 2000, 2002). However, what happens next, given the number
of inertial waves present and hence the rich possibilities for further triad resonances,
is unclear. The Ruelle–Takens transition scenario (Ruelle & Takens 1971) suggests
that transition to a strange attractor (and presumably turbulence) may only be a
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further one or two bifurcations away. Certainly, the experiments of Malkus (1989)
and Eloy et al. (2000, 2002) in which they see a sudden breakdown of the flow to
small scales would tend to support this, as would the direct numerical simulations
of Lungren & Mansour (1996) who report seeing only a primary and a secondary
instability before the flow apparently becomes turbulent. In this paper, we aim to
explore this gap between the emergence of a secondary instability and the appearance
of small-scale disorder.

Precessing flows offer an alternative arena to elliptical flows in which to study
strained rotating fluids. Produced when the axis of a vortex is forced to rotate,
a precessing flow is characterized by a strain perpendicular to the plane of the
streamlines. In the precessing frame, the streamlines remain circular but now are
sheared across each other so that their line of centres is no longer perpendicular to
the plane of motion. This is in contrast to elliptical flow where the strain is in the
plane of motion and causes the circular streamlines to become elliptical. Despite these
differences, instability in each case manifests itself through the pairwise resonance of
inertial waves although the details – the resonance conditions for two particular waves
to grow – obviously differ (Kerswell 2002). As a result, the nonlinear dynamics for
precessing flows should be very similar in character to that for elliptical flow. Studying
precessing flows, however, has the considerable advantage that a particularly accessible
plane layer model may be formulated. Given this, the main purpose of this paper
is to explore the nonlinear dynamics generated by precessional instabilities within
such a model using direct numerical simulation. Leading issues to be addressed
include determining the form of the bifurcation structure beyond criticality. Although
the primary and secondary bifurcations are known to be supercritical, subsequent
subcriticality could mean the instability undergoes a sudden transition. This has a
bearing on the ‘strength’ of the instability as measured by how quickly the sustainable
disturbance energy grows as a function of the bifurcation parameter. The co-existence
of multiple nonlinear states would also be a strong indication of complex temporal
behaviour.

Beyond addressing these fundamental issues in strained rotating flows, the other
motivation for this study is the renewed interest in understanding the precessional
response of the Earth’s fluid-filled outer core (Vanyo & Dunn 2000; Lorenzani &
Tilgner 2001; Noir, Jault & Cardin 2001; Pais & Le Mouel 2001; Tilgner & Busse
2001). The Earth’s outer core is traditionally modelled in the laboratory as a slightly
oblate fluid-filled spheroid spinning quickly about its axis of symmetry which is forced
to undergo slow retrograde precession (e.g. Malkus 1968; Vanyo 1991; Vanyo et al.
1995). Such experiments have revealed a plethora of interesting flows culminating in a
fully turbulent response at high enough precession rates (Malkus 1968). Unfortunately,
it still remains unclear how to scale up these results to Earthlike parameters. This
is because the ‘basic’ laminar precessional response, which is the viscously corrected
version of Poincaré’s (1910) famous solution, is a complicated mixture of inertial
strains in the interior (Kerswell 1993) and small-scale viscous effects which exist not
only at the boundary but throughout the interior in the form of viscous shear layers
(Stewartson & Roberts 1963; Roberts & Stewartson 1965; Busse 1968; Hollerbach
& Kerswell 1995; Kerswell 1995; Tilgner 1999a–c; Noir et al. 2001; Tilgner &
Busse 2001). Not surprisingly, a complete stability analysis of this three-dimensional
small-scale flow within the crucially non-spherical geometry of an oblate spheroid
represents a formidable undertaking. A recent attempt at direct numerical simulation
has unfortunately been thwarted by weak Ekman boundary-layer instabilities which
although not significantly affecting the interior flow do lead to unresolvably small
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scales (Lorenzani & Tilgner 2001). Despite this, Lorenzani & Tilgner (2001) were also
able to find viscously generated instabilities in the interior, but again, these were weak
(the energy in the instability Kinst never exceeded 1% of the total energy K of the
flow in the precessing rotating frame). A separate effort to examine the stability of the
viscous structures by studying a precessing fluid-filled sphere has also found similarly
weak viscous instabilities with O(10−4) 6 Kinst/K 6 O(10−2) (Tilgner & Busse 2001).

In the absence of viscosity, it can be shown that Poincaré’s inviscid solution
as a strained rotating flow is linearly unstable to the pairwise growth of inertial
waves (Kerswell 1993). This offers an obvious candidate mechanism for the ‘strong’
instabilities which must exist to disrupt the solution and ultimately lead to the
turbulent breakdown observed. Similarly strong flows are also seen experimentally in
precessing cylinders (Gans 1970a; Manasseh 1992, 1994, 1996; Kobine 1995). One of
the purposes of this paper is to investigate this ‘strength’ issue in the context of a simple
planar model. Poincaré’s solution possesses both elliptical and precessional strains,
however, for Earthlike parameters, the precessional strain completely dominates the
elliptical strain. Hence, it is entirely appropriate to focus upon the shearing of the
fluid streamlines across each other, an effect which is readily captured in the plane
layer model studied here. This, after all, is the generic precessional response of the
fluid freed from boundary constraints (see Kerswell 1993 § 5).

There are many other questions surrounding the behaviour of strained rotating
flows suggested by possible planetary applications. Geophysically, one of the most
pertinent questions is whether precessing and tidal (elliptical) flows can exhibit sus-
tained behaviour over ‘slow’ time scales. This is motivated by the desire to understand
whether the temporal behaviour of the Earth’s magnetic field, which is observed to
vary over slow time scales of the order of the magnetic diffusion time for the Earth
(15 000 years), could be influenced by such ‘fast’ (daily) processes. (As viewed from
the rotating Earth, the tidal and precessional distortions have a daily frequency and,
as will be seen, drive instabilities with frequencies of the same order.) The fact that
e-folding times for growing inertial wave instabilities are typically on the magnetic
diffusion time scale has already been pointed out (Kerswell 1994; Rieutord 2000;
Seyed-Mahmoud, Henderson & Aldridge 2000). However, evidence that the nonlin-
ear dynamics of these instabilities could also exhibit such long-term behaviour would
be much more convincing of a possible connection.

There is also the question of whether tidally (elliptically) or precessionally driven
electrically conducting fluid flows could act as ‘dynamos’, that is, could they generate
and sustain a magnetic field against Ohmic dissipation. Although this particular issue
is beyond the scope of the current paper, one of the underlying aims here will be
to uncover parameter regimes where sufficiently complicated precessing flows exist to
explore this possibility in later work. Experimental work by Gans (1970b) using liquid
sodium has already indicated that precessing flows can significantly magnify ambient
background fields. Other applications beyond our Earth potentially exist in the newly
studied Galilean satellites (Kerswell & Malkus 1998; Showman & Malhotra 1999) and
further afield still in newly discovered extra-solar planetary systems (Perryman 2000).
The discovery of massive gaseous planets having very small orbital radii suggests that
tides and precession may play a leading role in their dynamics and the generation of
any magnetic field present.

One final reason for introducing and studying the precessing planar model here is
its extendability to incorporate other physical effects. One particularly interesting issue
is the effect of stable stratification on the precessional instability as a simple model of
a precessing but non-convecting planetary core. Following the work of Gans (1970b),
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the advection of an ambient magnetic field can also be studied as a possible model
of Io’s tidally-distorted fluid core which sits in Jupiter’s magnetic field (Kerswell &
Malkus 1998). Geophysically, the interaction of precessing and convecting flows is
of particular interest since the Earth’s core is convecting. Arguing on the basis of
relevant time scales, there would appear to be little mechanistic overlap between the
two. However, given the fact that precession is a persistent effect which can drive
non-trivial, albeit rapidly fluctuating flows for long times, this seems dangerously
simplistic.

The plan of the paper is as follows. Section 2 introduces the precessing plane layer
model and discusses the strained rotating flow that is realized as the basic precessional
response. The numerical formulation used to solve the equations is described in § 3.
This is kept brief since the techniques used are largely standard. Section 4 discusses
the asymptotic theory for the precessional instability in the limit of small precession
rate. The instability occurs by two inertial waves resonating through the underlying
strain field which is exactly the instability mechanism for elliptical flow. A linear
time-stepping code is then used to extend this asymptotic theory to finite precession
rates. The results of various nonlinear simulation runs showing how these instabilities
evolve is then presented in § 5 followed by a final discussion in § 6.

2. Formulation
Consider the motion of a viscous fluid sandwiched between two plane boundaries

at Z = ± 1
2

which are rotating (rapidly) with angular velocity Ẑ in a frame rotating

(slowly) at angular velocity εX̂ . In this precessing frame (R = XX̂ + Y Ŷ + ZẐ) the
equations of motion (non-dimensionalized by the boundary spin rate ω and plate
separation H) are

∂U

∂t
+ 2εX̂ ×U +U · ∇U + ∇P = E∇2U , (2.1)

∇ ·U = 0, (2.2)

with boundary conditions

U (X,Y ,± 1
2
) = Ẑ × R, (2.3)

where Ekman number E = ν/(ωH2) is the usual non-dimensionalization of the
kinematic viscosity ν. For reasons which will quickly emerge, it is more convenient to
work in the boundary (rotating, precessing) frame in which the boundaries are at rest
(commonly called the ‘mantle’ frame in the context of the precessing Earth). Here,
relative to the new axes (x = X cos t + Y sin t, y = −X sin t + Y cos t, y, z = Z), the
equations of motion are

∂u

∂t
+ 2[ẑ + ε(t)]× u+ u · ∇u+ ∇p = E∇2u+ 2zε(t), (2.4)

∇ · u = 0, (2.5)

subject to the boundary conditions

u(x, y,± 1
2
) = 0, (2.6)

where

ε(t) = εX̂ := ε(x̂ cos t− ŷ sin t). (2.7)
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–εŶ εŶ
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Figure 1. The basic state solution U basic in the precessing frame. The velocity can either be viewed as

circular streamlines parallel to the boundaries at Z = ± 1
2

but sheared in the X̂ direction (left-hand

diagram), or as solid body rotation + a uniform shear in the Ŷ direction (right-hand diagram).

A simple flow solution exists to the equations of motion which has the form

U basic = Ẑ × (R− 2εZX̂ ) = −Y X̂ + (X − 2εZ)Ŷ (2.8)

in the precessing frame and

ubasic = 2[ε(t)× ẑ]ẑ · r = −2εz(x̂ sin t+ ŷ cos t) (2.9)

in the boundary frame. This represents a uniformly strained rotating flow in which
the streamlines remain circular (in the precessing frame), but where the vorticity is no
longer perpendicular to the plane of motion (see figure 1). Another way to describe
the flow is to note that the line connecting the centres of the circular streamlines
is no longer perpendicular to the plane of the streamlines, or in other words, the
circular streamlines are sheared across each other. This is the generic precessional
response of a fluid and is realized in the interior of precessing containers where
boundary layers typically fix up the boundary conditions (see Mahalov 1993 for the
case of a precessing cylinder and Kerswell 1993 for a precessing spheroid). Here in
this plane layer situation, weak O(ε) boundary layers are also required to compensate
for the non-vanishing velocity of the basic flow at the boundaries. In what follows,
we will ignore these layers in order to focus upon the stability of the sheared circular
streamline structure set up in the interior. (Physically, it is possible to avoid such
layers anyway by arranging for the two planar boundaries to have slightly different
rotation centres, that is, the plate at Z = ± 1

2
is made to rotate at Ẑ about the point

R = (±ε, 0,± 1
2
) rather than R = (0, 0,± 1

2
).) Once this step is taken, the precessing fluid

layer presents an excellent arena in which to study the flows that can be driven by
interior strains since in the boundary frame the basic state is translationally invariant
in both homogeneous directions. This is in contrast to the closely related case of
elliptical flow in which the basic state would be

U elliptical = −(1− β)Y X̂ + (1 + β)XŶ , (2.10)
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in the inertial frame where β measures the elliptical distortion and

uelliptical = β(x sin 2t+ y cos 2t)x̂+ β(x cos 2t− y sin 2t)ŷ, (2.11)

in the boundary or rotating frame. The elliptical perturbation is clearly not invariant
under x or y translations and moreover becomes unbounded as either |x| or |y|
becomes large. This makes studying elliptical flow in this context problematic. The
difference between the two types of flow, however, is rather simple when viewed from
cylindrical polar coordinates (s, φ, z); the basic state in elliptical flow corresponds
to an e2iφ perturbation of axisymmetric circular streamlines whereas the precessing
basic state represents an eiφ perturbation. As a result, the basic mechanism of linear
instability is identical – parametric resonance of pairs of inertial waves – although the
details vary – the exact pairs of waves which can resonate together are different. This
means that we can expect much of the nonlinear dynamics revealed in precessing
flows to carry over to elliptical flows.

In this paper, we solve for the deviation of the flow solution from the basic state.
The governing equations for ũ := u− ubasic in the boundary frame are

∂ũ

∂t
+ 2ẑ × ũ+ ũ · ∇ũ+ ∇p̃− E∇2ũ

= ε

2z

[
sin t

∂

∂x
+ cos t

∂

∂y

]
+

 0 0 4 sin t
0 0 4 cos t

−2 sin t −2 cos t 0

 ũ, (2.12)

∇ · ũ = 0, (2.13)

which we solve subject to the stress-free boundary conditions

∂ũ

∂z
=
∂ṽ

∂z
= w̃ = 0 on z = ± 1

2
. (2.14)

These rather than the more natural non-slip conditions are used to avoid Ekman
boundary layers which would be numerically expensive to resolve. Additionally,
the inertial waves used to discuss the instability mechanism in § 4 automatically
satisfy stress-free boundary conditions. This helps focus attention on the instability
mechanism in the interior rather than on what are secondary details at the boundaries.

3. Numerics
Solutions to the system (2.12)–(2.14) are sought which are periodic in both the

x-direction (period 2π/kx) and the y-direction (period 2π/ky). The fundamental
wavenumbers kx and ky are chosen to facilitate the precessional response of the
fluid in a way to be discussed below. The velocity field is decomposed into toroidal
and poloidal parts together with mean horizontal components,

ũ = ∇× e(x, t)ẑ + ∇× ∇× f(x, t)ẑ +Ux(z, t)x̂+Uy(z, t)ŷ, (3.1)

so that incompressibility is enforced ab initio. The scalar equations for e, f, Ux and
Uy are ẑ · ∇× (2.12), ẑ · ∇× ∇× (2.12), x̂ · (2.12) and ŷ · (2.12) where

A :=
kxky

4π2

∫ 2π/kx

0

∫ 2π/ky

0

A dy dx (3.2)
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is the horizontal average, which are to be solved subject to the boundary conditions

f =
∂2f

∂z2
=
∂e

∂z
=
∂Ux

∂z
=
∂Uy

∂z
= 0. (3.3)

The method of solution is one of Galerkin-projection in x and y and collocation over
z using the spectral expansions

e :=

Nx∑
l=−Nx+1

Ny∑
m=−Ny+1

Nz∑
n=1

elmn(t) exp i(lkxx+ mkyy)φn(2z), (3.4)

f :=

Nx∑
l=−Nx+1

Ny∑
m=−Ny+1

Nz∑
n=1

flmn(t) exp i(lkx + mkyy)ψn(2z), (3.5)

Ux :=

Nz∑
n=1

Uxn(t)φn(2z), Uy :=

Nz∑
n=1

Uyn(t)φn(2z). (3.6)

The expansion functions in z are defined as follows

φn(z) := Tn−1(z)− (n− 1)2

(n+ 1)2
Tn+1(z),

ψn(z) := Tn−1(z)− 2(n+ 1)(2n2 + 4n+ 9)

(n+ 2)(2n2 + 8n+ 9)
Tn+1(z) +

n(2n2 + 1)

(n+ 2)(2n2 + 8n+ 9)
Tn+3(z)

with

Tn(z) := cos(n cos−1 z) (3.7)

being the Chebyshev polynomial of degree n, so that they individually satisfy the
appropriate boundary conditions. For given truncation (Nx,Ny,Nz) there are 2Nz

(1 + 2Ny + 4NyNx) degrees of freedom since Uxn and Uyn are real coefficients and the
complex coefficients e and f satisfy e00n = f00n = 0, e−l−mn = e∗lmn and f−l−mn = f∗lmn
where ∗ indicates complex conjugation. A typical truncation level used in this paper
was (Nx,Ny,Nz) = (8, 8, 32) corresponding to 17 472 degrees of freedom and the largest
used was (Nx,Ny,Nz) = (16, 16, 32) with 67 648 degrees of freedom. No particular
symmetries were imposed upon the solutions so that perfectly general velocity fields
could develop, albeit within the chosen periodic box 0 6 x 6 2π/kx, 0 6 y 6 2π/ky .
The fact that the basic solution has a definite parity about the midplane in z, however,
was exploited by splitting each of the dependent variable expansions into even and
odd parts and dealing with each separately. Although this doubled the number of
discretization matrices, it also halved their size hence doubling the speed of the code.

The spectral equations were integrated forward in time using a second-order
Adams–Bashforth scheme for the advective and precessional terms and a second-
order Crank–Nicolson scheme for the diffusive terms. The nonlinear terms were
calculated in physical space with optimized fast Fourier transform routines being
used to transfer between spectral and physical space. These are standard practices
for numerical solution of such systems (see, for example, Jones & Roberts 2000). A
typical runtime for the code at truncation level (Nx,Ny,Nz) = (8, 8, 32) to cover 10
fast rotation periods was 11.3 min on an Alpha 21264A 667 MHz processor taking a
time step ∆t = 2π/1000 and using a memory of 10 MB. For (Nx,Ny,Nz) = (16, 16, 32),
the largest run ever undertaken, these numbers jump to 87.3 min and 24 MB. The
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time step has to be chosen so small to resolve the inertial oscillations inherent in the
system – this is a classically stiff problem.

Various physical quantities were output as the code ran. Defining the bulk average
as

〈A〉 :=

∫ 1/2

−1/2

dz A =
kxky

4π2

∫ 2π/kx

0

dx

∫ 2π/ky

0

dy

∫ 1/2

−1/2

dzA, (3.8)

the long-time averages of the global kinetic energy of the velocity disturbance

K :=
1

T − T0

∫ T

T0

K(t) := 〈 1
2
ũ2〉 dt (3.9)

and the total power dissipation

D :=
1

T − T0

∫ T

T0

D(t) := 2E〈eijeij〉 dt, (3.10)

were used as global measures of the velocity solution where T0 is appropriately chosen
to be beyond initial transients and eij := 1

2
(ui,j + uj,i) is the rate of strain tensor. The

ratio of the root-mean-square of the disturbance velocity to the basic velocity,

I :=

√
〈ũ2〉√
〈u2
basic〉

=

√
6K

ε
, (3.11)

was used to measure the strength of the instability, whereas D/Dbasic = D/(4Eε2)
gave a measure of the dissipative efficiency. To help diagnose the character of the
solutions, the energies Elm(t) associated with each Fourier mode (l, m) and the mean
flow components E00 = 〈 1

2
(U2

x +U2
y )〉 were also output as was the value of Re(w̃) at

the arbitrary point (x, y, z) = (0, 0, 1/2
√

2) for the purposes of generating a (typical)
time series of the flow evolution.

4. Linear results
4.1. Linear instability: theory

The precessional instability mechanism is inertial in character and hence is most
clearly understood by ignoring viscosity in the problem (2.12)–(2.14). Linearizing to
consider small disturbances further simplifies the system to

∂ũ

∂t
+ 2ẑ × ũ+ ∇p̃ = ε[eitL+ e−itL∗]ũ, (4.1)

where

L :=

 z(∂y − i∂x) 0 −2i
0 z(∂y − i∂x) 2
i −1 z(∂y − i∂x)

 , (4.2)

with

∇ · ũ = 0, w̃(x, y,± 1
2
) = 0. (4.3)
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When ε = 0, equation (4.1) reduces to the inertial wave problem (Greenspan 1968)
for which a complete set of normal modes or inertial waves exist of the form

u

v

w

p

 =


k2(kxλ− 2iky) cos(nπ[z + 1

2
])/4k2⊥

k2(kyλ+ 2ikx) cos(nπ[z + 1
2
])/4k2⊥

−ikz sin(nπ[z + 1
2
])/λ

cos(nπ[z + 1
2
])

 exp(i(kxx+ kyy + λt)) (4.4)

with k2⊥ := k2
x + k2

y , kz := nπ, k2 := k2⊥ + k2
z and the dispersion relation is

λ =
±2kz
k

, (4.5)

where n = 0, 1, 2, . . . and kx, ky ∈ R. For 0 < ε� 1, the right-hand side of (4.1) acts as
a small coupling term between these neutral inertial modes which can lead to secular
growth on the O(1/ε) time scale. To see this, introduce a slow timescale τ = εt and
consider a linear combination of two inertial waves (λA 6= λB),

ũ = A(τ)uA(x) exp(iλAt) + B(τ)uB(x) exp(iλBt) + εṽ(x, t) + · · · (4.6)

to leading order in ε. The lowest O(1) version of (4.1) confirms that the amplitudes A
and B are independent of the fast time t. At next order, O(ε),

∂ṽ

∂t
+ 2ẑ × ṽ + ∇p̃ = A[exp(i(λA + 1)t)L+ exp(i(λA − 1)t)L∗]uA(x)

+B[exp(i(λB + 1)t)L+ exp(i(λB − 1)t)L∗]uB(x)

−AτuA exp(iλAt)− BτuB exp(iλBt). (4.7)

The slow variation of the amplitudes A and B is determined by the elimination of
any secularity in ṽ. Introducing the inner product

〈u, v〉 := lim
L→∞

1

4L2

∫ L

−L

∫ L

−L

∫ 1/2

−1/2

u∗ · v dz dy dx, (4.8)

under which inertial waves are orthogonal, then 〈uA exp(iλAt), (4.7)〉 requires that

Aτ〈uA, uA〉 = B〈uA, [exp(i(λB − λA + 1)t)L+ exp(i(λB − λA − 1)t)L∗]uB〉, (4.9)

all other terms necessarily being non-secular. Clearly, the case of interest is when
λB = λA ± 1 and without loss of generality, we choose λB = λA + 1, so that (4.9) and
〈uB exp(iλBt), (4.7)〉 then give

Aτ〈uA, uA〉 = B〈uA,L∗uB〉, Bτ〈uB, uB〉 = A〈uB,LuA〉. (4.10)

These amplitude equations have secularly growing solutions (A,B) = (A0, B0)e
σεt pro-

vided

σ2 =
〈uA,L∗uB〉〈uB,LuA〉
〈uA, uA〉〈uB, uB〉 (4.11)

is positive. The numerator vanishes unless the inertial waves uA and uB have (i) exactly
the same wavenumbers (kx, ky) and (ii) opposite parity in z, i.e. nB − nA = 1 mod 2.
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nA →
1 2 3 4 5 6 7 8

nB ↓

1
. . . 18.059 — 29.352 — 40.433 — 51.434

2 0.3547
. . . 30.304 — 41.838 — 53.117 —

3 — 0.3743
. . . 42.504 — 54.176 — 65.596

4 0.0948 — 0.3797
. . . 54.690 — 66.456 —

5 — 0.1115 — 0.3819
. . . 66.868 — 78.691

6 0.0479 — 0.1182 — 0.3830
. . . 79.044 —

7 — 0.0598 — 0.1216 — 0.3836
. . . 91.217

8 0.0300 — 0.0656 — 0.1236 — 0.3840
. . .

Table 1. Asymptotic growth rates σ (below the leading diagonal) and unstable wavenumbers k⊥
(above the leading diagonal) for precessional instabilities of type 1. These results are plotted in a
single table since they are identical if the values of nA and nB are interchanged.

Assuming these ‘resonant’ conditions hold, the inner products in (4.11) evaluate to

〈uA,L∗uB〉 = (kx − iky)

{
Q − n2

Bk
2
A(2− λA)

2(n2
B − n2

A)λBk
2⊥

}
, (4.12)

〈uB,LuA〉 = (kx + iky)

{
−Q+

n2
Ak

2
B(2 + λB)

2(n2
B − n2

A)λAk
2⊥

}
, (4.13)

where

Q =
(n2
A + n2

B)k2
Ak

2
B(4 + λAλB)

8(n2
B − n2

A)2π2k2⊥
− n2

Ak
2
B(2 + λB)λB + n2

Bk
2
A(2− λA)λA

2(n2
B − n2

A)k2⊥λAλB
+

4n2
An

2
B

(n2
B − n2

A)2λAλB
,

(4.14)

and

〈uA, uA〉 =
k4
A

4k2
⊥
, 〈uB, uB〉 =

k4
B

4k2
⊥
. (4.15)

The numerator in (4.11) also vanishes if either nA or nB is zero. This means that the
exceptional inertial wave with n = λ = 0 present here in this planar geometry never
participates in a precessional instability. For other pairs of inertial waves, three types
of precessional instability can be identified as follows:

1. −1 < λA < 0 < λB < 1 unique k2⊥ any nA 6= nB 6= 0

2. 0 < λA < 1 < λB < 2 two solutions k2⊥ < k2
0, k2⊥ > k2

0 if nB > nA(2 +
√

5)

3. −2 < λA < −1 < λB < 0 two solutions k2⊥ < k2
0, k2⊥ > k2

0 if nA > nB(2 +
√

5)

where k2
0 := π2n

2/3
B n

2/3
A (n

2/3
B + n

2/3
A ).

The most important precessional resonances are of type 1 with −1 < λA < 0 <
λB < 1. In fact, for all instabilities of types 2 and 3 we considered we found σ2 < 0,
so that precession simply shifts the frequency of the underlying inertial waves rather
than leading to unstable growth. Table 1 shows the unstable wavenumbers k⊥ and



Chaotic dynamics in a strained rotating flow 81

0.4

0.3547

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

r

nA → ∞

n
A = 1

2

3

4

56

E/ε (¬10–3)

Figure 2. Asymptotic (E, ε → 0) growth rates σ as a function of E/ε for precessional resonances

with nB = nA + 1. ×, asymptotic supremum growth rate 5
√

15/16π−1, and 0.3547 is the maximum
growth rate for nA = 1.

growth rates σ for some possible resonances of type 1, where k⊥ is the unique
solution of λA + 1 = λB for given nA and nB , and σ is given by (4.11). From table 1
we see that the largest growth rates manifest themselves for nB = nA + 1 when
the inertial waves ‘overlap’ most strongly. The growth rates for these resonances
increase monotonically as nA → ∞, ultimately approaching the asymptotic growth
rate supremum of 5

√
15/16 π−1 ≈ 0.385. This is a factor of 2/π smaller than the

maximum growth rate of 5
√

15/32 ≈ 0.605 possible in an unbounded precessing fluid
(Kerswell 1993) and is an indication that the slight mismatch in z-structure between
the resonating waves is always significant.

The presence of viscosity acts to suppress small scales which here translates into
precessional instabilities with large nA and nB (note from table 1 that larger nA and
nB also have larger values of k⊥). The viscous damping rate of an inertial wave is just
Ek2 for stress-free boundary conditions so that the leading-order viscous correction
to the amplitude equations, (4.10), is:(

Aτ +
E

ε
k2
AA

)
〈uA, uA〉 = B〈uA,L∗uB〉,

(
Bτ +

E

ε
k2
BB

)
〈uB, uB〉 = A〈uB,LuA〉.

(4.16)

For more physical non-slip boundary conditions, the viscous damping rate is O(E1/2).
For each case considered in § 5, we actually have Ek2 = O(E1/2), so the two damping
rates are comparable. Instability can now only arise if the inviscid growth rate σε
given by (4.11) exceeds the geometric mean of the viscous decay rates,

σε > EkAkB. (4.17)

The precessional instabilities with large nA and nB are therefore preferentially damped
so that the type 1 instability with nA = 1, nB = 2 has effectively the largest growth rate
for the largest range of parameters as illustrated in figure 2. Here, attention will be
focused exclusively on this particular precessional instability where k⊥ = 18.059 with
nA = 1, λA = −0.3428, nB = 2, λB = 0.6572 and σ = 0.3547 in the limit ε → 0. This
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Figure 3. Numerically determined growth rates σ for finite ε (E = 0) for the nA = 1, nB = 2
instability. (a) Values of —, σmax and — ·—, σ(k⊥ = 18.059) where 18. 059 is the asymptotic (ε→ 0)
optimal value of k⊥. (b) The instability tongue emanating from this point in wavenumber space
(-- -- --, k⊥ which gives the maximum growth rate).

enables us to concentrate on the simplest precessional flow where only two inertial
waves are excited by the initial linear instability. Consideration of table 1 shows that
much more complicated scenarios may arise for alternative choices of k⊥. ‘De-tuning’
at finite parameters often enables unstable growth over a range of wavenumbers
surrounding the asymptotic value (see, for example, figure 3(b) where unstable growth
can exist for k⊥ ∈ (14.04, 19.89) at ε = 0.25). It is therefore quite possible that k⊥ ≈ 30
may excite resonances nA = 2, nB = 3, and nA = 1, nB = 4 simultaneously, whereas
k⊥ ≈ 41 could excite any or all of nA = 3, nB = 4, nA = 2, nB = 5 and nA = 1, nB = 6,
provided the Ekman number is sufficiently small. Consideration of such systems is
left for future investigation.

4.2. Linear instability: numerics

To check and extend the asymptotic theory described above, the linear timestepping
code was adapted to apply Floquet stability analysis to the time-periodic basic flow
(2.9) at finite ε (E = 0). This produced excellent agreement in the limit ε → 0 with
the theoretical growth rates deduced above. Figure 3 shows the instability tongue
which emanates from the asymptotic resonance point k⊥ = 18.059, σ = 0.3547 for
the instability (nA = 1, nB = 2) of interest. The Floquet code also proved an ideal
way to generate initial conditions at finite precession ε and Ekman number E for the
nonlinear time-stepping calculations described below. For simplicity, the periodicity
of the numerical domain was always chosen to reflect the asymptotically optimal
horizontal wavelength k⊥ = 18.059 for the fastest growing mode (nA = 1, nB = 2).
Although this was no longer the strictly optimal k⊥ at the finite ε and E used, its
corresponding growth rate was always close to maximal over the precession rates
used, as is evident in figure 3(a). A final use of the Floquet code was to examine the
structure of the linearly unstable flow. Visualizations of the velocity field in the (y, z)-
plane showed a very clear ‘two-cell’ structure in each velocity component. Although
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these were insensitive to amplitude, they provided a useful reference for subsequent
visualizations of the nonlinear flow.

5. Nonlinear results
Following the validation of the linear time-stepping code using the asymptotic

theory, the nonlinear code was checked for energetic consistency. A comparison was
made between the disturbance kinetic energy at a given time calculated from the
time-stepped velocity (i.e. the PDE) with that determined by directly time-integrating
the kinetic energy evolution equation (〈ũ · (2.12)〉 an ODE). The error was typically
less than 1 part in 1000 over 30 fast rotation periods or revolutions using a time step
∆t = 2π/1000. Over longer time intervals, the level of agreement between the two en-
ergies depended on the behaviour of the developing flow. Flows with small energetic
variation of say ±50% about a mean level continued to have excellent agreement,
with errors often less than 1 part in 10 over O(1000) rotation periods. Flows with
energies varying over several orders of magnitude, however, had larger relative errors.
This is not surprising as errors are accumulated as the ODE is integrated in time, and
an error that would be considered small at a local maximum, can easily dominate the
ODE solution at local minima. Nonetheless, the qualitative behaviour of the PDE
and ODE energies gave good evidence that solutions were energetically consistent.

5.1. Two-dimensional nonlinear results

The time-stepping code was initially optimized to allow only two-dimensional flow
fields in order to gain some first insight into the nonlinear evolution of the precessional
instability. Specifically, the spectral expansions for the toroidal and poloidal parts were
restricted to

e :=

Ny∑
m=−Ny+1

Nz∑
n=1

emn(t) exp i(mkyy)φn(2z), f :=

Ny∑
m=−Ny+1

Nz∑
n=1

fmn(t) exp i(mkyy)ψn(2z),

so that for a given truncation (Ny,Nz), there were now only 2Nz(1 + 2Ny) degrees of
freedom. The numerical domain was defined by setting the primary wavenumber ky =
k⊥ for the fastest growing (nA = 1, nB = 2) linear instability and the corresponding
eigenfunction was used as the initial condition. Two parameter regimes were studied: a
weakly precessing situation E = 10−5, ε ∈ [0.009885, 0.028] and a strongly precessing
situation E = 5 × 10−5, ε ∈ [0.04996, 0.24]. Owing to the reduced stiffness of the
latter system, only this proved practical to continue studying using the fully three-
dimensional code.

Weakly precessing case: E = 10−5, ε ∈ [0.009885, 0.028]

This parameter regime was studied to clarify the weakly nonlinear behaviour of
the instability. Weakly nonlinear simulations carried out for an elliptically distorted
rotating cylinder (Mason & Kerswell 1999) already indicate that a growing elliptical
instability undergoes a secondary supercritical Hopf bifurcation once it reaches suffi-
cient amplitude. Similar behaviour should be expected for the precessional instability
considered here.

Figures 4 and 5 show how the energies and dissipations of the end-state solutions
found vary over the studied range. There are four separate solution branches and
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the flow shows two well-defined trends. The total dissipation D increases with pre-
cession rate (figure 4a) whereas the strength I of the instability decreases (figure 5b).
Effectively, the flow becomes more efficient in dissipating energy. The ‘lowest’ or first
branch (I) touches the ε-axis at εcrit = 0.009885 and represents the saturated nonlinear
state of the two unstable inertial waves. This is clear from the power spectrum in
figure 6(a), where the inertial frequencies at −λA = 0.3428 and λB = 0.6572 are clearly
visible.

Perhaps the most striking feature of figures 4 and 5 (and the subplots therein) is the
very narrow ε-interval over which the bifurcating flow from εcrit (branch I) climbs to a
finite amplitude. Coincidentally, this steep ascent has been seen before in the different
context of a doubly rotating infinite pipe of fluid (figure 14 of Barnes & Kerswell
2000). Since weakly nonlinear theory essentially holds for as long as the kinetic energy
K increases linearly off the axis (since |ũ| ∼ (ε− εcrit)1/2 implies K ∼ ε− εcrit) we can
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estimate the interval over which this theory is valid. From the subplots of figures 4(b)
and 5(b), the linear increase of K appears to stop when I = O(1) or |ũ| = O(ε) so that

(ε− εcrit)1/2 = βε, (5.1)

where β is an O(1) parameter. This means that we can estimate that weakly nonlinear
theory holds only over an interval of O(ε2

crit). Furthermore, from figures 4 and 5,
since the end of this region is ε ≈ 0.0099, β can be estimated as ≈ 0.39. To add
weight to this estimation procedure, we find below that a similar argument applied
in a situation where εcrit is five times larger gives rise to a very similar value of β
(β ≈ 0.34).

After branch I has climbed to a level where I = O(1), it loses stability through
a supercritical Hopf bifurcation at least by ε = 0.012 where the second branch
(II) is shown to start. In fact, examining the power spectrum of the time series for
ε = 0.0105 shown in figure 6(a) indicates that branch I is already unstable there,
although the saturated secondary amplitude is too small to be seen in a time history
of the evolution. This secondary amplitude is certainly visible at ε = 0.016 as shown in
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2). λ = 1 is the frequency
of the basic state solution (2.9). (a) Branch I solution for ε = 0.0105 taken for t > 3000 rev. (b)
Branch II solution for ε = 0.016 taken for t > 4000 rev. (c) Branch III solution for ε = 0.024 taken
for t > 1000 rev. (d ) Branch IV solution for ε = 0.028 taken for t > 500 rev.

figure 7(a) where a transition from branch I to II is clear for N > 3000 (a typical time
series of Fourier energy levels in figure 7(b) shows that the run is adequately resolved
by (Ny,Nz) = (16, 32)). Figure 6(b), which is the corresponding power spectrum
calculated for t > 4000 rev, clearly shows the emergence of this new periodicity in the
flow as although the inertial frequencies are still clear, so is a new slow frequency.
Beyond ε = 0.016, the secondary instability appears so quickly that the level of the
primary branch can no longer be distinguished.

Branch II persists until ε = 0.0215 when a new third branch (III) of enhanced
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dissipation is found to co-exist. At this value of ε different initial conditions can lead
to either final state. Branch III was originally found at ε = 0.022 and then traced back
as far as ε = 0.0215 by gradually decreasing ε. Below this value, the solution falls
back down to branch II to complete a hysteretic cycle. On branch III at ε = 0.024,
the broadband nature of the frequencies present in the time series (figure 6c) indicates
that this is a branch of chaotic solutions. The flow is now much more complex in
both space and time (see figures 7c and 7d ) and as a result requires at least Ny = 24
(runs at Ny = 32 were also done). The two data points corresponding to ε = 0.026
and ε = 0.028 appear to lie on a new fourth branch (IV). This is not overly clear from
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comparing the w̃-time series at ε = 0.024 and ε = 0.028 (figures 6c and 6d which both
contain broadband frequencies) but the emergence of a new periodicity at ε = 0.028
is evident from the power spectra of their total energies (see figures 8a and 8b).

Further observations of figure 7 give us an insight into the energetic structure of
the flow. In each of figures 7(b) and 7(d ) we see a clear hierachy of energy levels
associated with the Fourier modes (0, m), which is a significant indication that we
have enough resolution in the numerical experiments. Futhermore, we can see the
increasing complexity of the flows as ε increases. In figure 7(d ), for instance, the flow
undergoes periods of relaxation and rapid transition, characterized by the variation
of energy in the extremal mode (0, 23) over about 12 orders of magnitude. A final
remark for each solution branch is that the majority of the energy is always associated
with the linearly unstable mode. In particular, this implies that the mean flow (Ux,Uy)
gives quite a small contribution to the overall flow.

The implications of this initial survey are clear. The primary bifurcation is super-
critical and the flow disturbance quickly rises to attain an O(1) value for I . The
weakly nonlinear regime appears limited to an ε interval of size O(ε2

crit) beyond
ε = εcrit. A secondary supercritical bifurcation emerges which then gives way to
an abrupt transition to a higher and hence stronger chaotic branch. Even within
this restricted two-dimensional setting, the flow dynamics are complicated, displaying
multiple attracting solutions close (ε < 3εcrit) to the bifurcation point.

Strongly precessing case: E = 5× 10−5, ε ∈ [0.04996, 0.24]

The precession rate was increased five-fold in order to accelerate the instability
dynamics and shorten the necessary run times. Using the same type of initial condi-
tions as above, four distinct solution branches, i–iv, were again found by an initial
survey over precession rates ε ∈ [0.05, 0.24] (see figures 9 and 10). At these increased
precession rates, the transitions between the branches were all found to be discontin-
uous. Once found, each branch was traced out by gradually adjusting the precession
rate ε in steps of 0.001. Branch i corresponds to the saturated endstate of the two
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growing inertial waves and extends from εcrit = 0.04996 to ε = 0.132. Branch ii was
found for 0.086 6 ε 6 0.092 and branch iii for ε > 0.083. A final family of solutions
corresponding to branch iv was found to exist for ε > 0.115.

Figures 9 and 10 summarize how the energies and dissipation vary over the solution
branches. Transitions found between the branches were as follows. If ε is decreased
from 0.086 to 0.085 on branch ii, or from 0.083 to 0.082 on branch iii, the solution
evolves to branch i. If ε is increased from 0.092 to 0.093 on branch ii, the solution
evolves (restabilizes?) to branch iii and branch i leads to branch iv at ε = 0.133 and
vice versa at ε = 0.114. (In all cases, the stability of a state was judged by eye after
running for 6000 fast revolutions.) Various truncation levels of Ny = 8, 16, 24 and 32
were used to verify all the results.

As in the weakly precessing case, the initial bifurcation beyond ε = εcrit can be seen
to be supercritical (subplot of figure 9), and following the analysis of that section
we can estimate β ≈ 0.34 which is in good agreement with the previous estimate.
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This adds weight to our previous (tentative) assertion that the ε-interval over which
weakly nonlinear theory is valid is only O(ε2

crit) beyond ε = εcrit.
The power spectra in figure 11(a) confirm that branch i is the saturated nonlinear

state of the two inertial waves, whose frequencies at −λA = 0.3428 and λB = 0.6572 are
clearly visible. Figures 11(b) and (c), however, indicate that solution branches ii and
iii represent very different types of solutions where discrete inertial wave frequencies
are absent. Instead, the dominating frequencies are integer multiples of the basic state
frequency λ = 1. The similarity between these figures and the additional frequencies
present in figure 11(b) suggests that branch ii may represent solutions which have
bifurcated from those on branch iii through a low-frequency instability (see also the
time series shown in figure 12b, c). A typical power spectrum for branch iv (figure 11d )
is essentially the power spectrum for branch i with a chaotic modulation added.

Figure 12 provides good insight into the energetic structure of the four solution
branches. Branch i (figure 12a) has a very clearly ordered structure of energy within
the Fourier modes, and likewise for branch iii (figure 12c). Figure 12(b), corresponding
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to branch ii has a similar energetic structure to branch iii on average, but a steady
period of approximately 44 revolutions is also clearly evident (and corresponds to
the additional slow frequency in figure 11b). Figure 12(d ) indicates large temporal
varitions in branch iv, as the solutions have periods where only the first modes (0,0)
and (0,1) hold significant energy, followed by intervals where higher wavenumber
Fourier modes play a significant role. A final point to note from each plot in figure 12
is that in all of these four branches the Fourier mode (0,0), i.e. the mean flow, contains
the most energy for the majority of the time, even though the linear instability is
present in the (0,1) mode. This is in contrast to the weakly precessing case, where
(0,1) maintains the major share of the energy (figure 7b, d ).
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Figure 12. Strongly precessing case: E = 5 × 10−5. Time series of energy distribution among the
Fourier modes E0,m for branches i to iv. K (thick solid line) is the total energy and N is the number
of fast revolutions. (a) Branch i solution for ε = 0.09. E0,7 tends to 10−18 at long times. (b) Branch
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figure 14.

The same general features emerge as in the slowly precessing case above. The
total dissipation increases with precession rate, whereas I tends to decrease so that
the instability appears to become more ‘efficient’ in dissipating energy. There are
again multiple attracting solutions for a given precession rate. For example, attracting
solutions on branches i, ii and iii co-exist for 0.086 6 ε 6 0.092, and solutions on
branches i, iii and iv for 0.115 6 ε 6 0.132. The ‘strong’ precession rate has, however,
produced new types of solution given by branches ii and iii. Branch iii is particularly
interesting since it represents a directly forced type of solution as the only frequencies
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present are multiples of the fast precessional perturbation. Although its existence is
perhaps not surprising, this solution can only exist as a finite-amplitude perturbation
of the basic laminar state (branch iii cannot connect to the laminar state). Since
figure 12(c) shows a steep drop off in the spectral energy with wavenumber, it seemed
possible that a simple model of the solution could be isolated using only the mean and
first harmonic. Numerical experiments confirmed that the solution could be captured
comfortably with the severe truncation Ny = 1, but the complicated time-dependent
z-structure of the velocity field thwarted any further reduction to a lower dimensional
system.

Figures 13 and 14 show snapshots of u, ũ = u− ubasic and w on the various branch
solutions at times t = 2πM + 1

6
π (so ubasic = −2εz sin t = −εz) where M is chosen so

that the branch of interest can be considered as stable. These allow us to visualize
many of our previous observations for the velocity field. In particular, given any
set of snapshots (a given row of figure 13 or 14) the leftmost plot, shows us how
distorted the underlying shear flow of the basic state is by the perturbation velocity ũ.
Together with the centre plot, we can establish the relative contributions of the basic
and perturbation velocities to the field as a whole. For example, in figure 13, the basic
and perturbation velocities are always comparable (agreeing with our observation
of flows with I = O(1)), whereas for the first row of figure 14 there is an order of
magnitude separation between the contributions. Finally, comparisons of the central
and rightmost plots give an indication of the contribution made by the mean flow,
since this cannot play any part in the w component of the flow. Flows with a strong
ũ component and a weak w̃ = w component are therefore suggestive of a large mean
flow, e.g. the first row of figure 14.

Other significant observations from figure 13 include the fact that branch i (fig-
ure 13a–c) clearly possesses the signature of the two inertial waves through the
z-structure. Also the similarity of the velocity structures seen in figures 13(d–f ) and
13(g–i ) emphasizes the close relationship between branch ii and iii solutions. Fig-
ure 14 displays the branch iv solution at two different instances as it varies so much
over one of its cycles (see figure 12d ). In periods of relaxation (subplots (a)–(c)), the
flow is dominated by the basic state ubasic and the main contribution to the pertur-
bation velocity comes from the mean flow. However, only 60 revolutions later (see
figure 12d ), in periods of rapid transition the flow has I = O(1) (w, for example, is
nearly 30 times larger in ( f ) than in (c)), and the mean flow no longer dominates.
We also observe that plots (d )–( f ) have finer scales than those of (a)–(c).

5.2. Three-dimensional nonlinear results

The first decision in extending the numerical simulations to three dimensions was
what wavenumber grid to take. Making the obvious choice kx = ky = k⊥ would
mean that two ‘primary’ instabilities would be simultaneously excited at (kx, ky) =
(k⊥, 0) and (0, k⊥) making comparison with the two-dimensional results impossible.
To avoid this, kx = 2

3
ky was chosen throughout. The second decision was how to

prescribe initial conditions. For general three-dimensional runs, the initial conditions
for the two-dimensional runs – the Floquet eigenfunction at (l, m) = (0, 1) with energy
E01 = 0.5 × 10−5 – was augmented by adding random perturbations into Fourier
mode locations (l, m) = (0, 0), l = 0, 2 6 m 6 4 and 1 6 l 6 4,−4 6 m 6 4
such that Elm = 0.5 × 10−6 for these positions (the truncation used was always at
least (Nx,Ny,Nz) = (8, 8, 32)). Using this over the range 0.05 6 ε 6 0.24 revealed
the presence of three branches (A, B and C) of new three-dimensional solutions
characterized by their dissipation and kinetic energy, as shown in figures 15 and 16.
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Figure 13. For caption see facing page.
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Figure 14. Strongly precessing case: E = 5 × 10−5. Eigenfunctions for the branch iv solution at
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An interesting first observation is that branches B and C have much larger dissipations
that any two-dimensional solutions at larger values of ε (figures 15a and 16a). These
three-dimensional runs never selected any of the previously isolated two-dimensional
states. All of the four branches of two-dimensional solutions were then tested for

Figure 13. Strongly precessing case: E = 5× 10−5. Contour plots of the velocity field. In this and
all subsequent contour plots the solid lines represent contour lines with values > 0 and the dotted
lines < 0. Maxima and minima of the contour vales are given on each subplot. Plots (a), (b) and
(c) show u, u− ubasic and w, respectively, for the branch i solution at ε = 0.09 where u = (u, v, w) is
the velocity field. The contours have equally spaced intervals of 0.005, 0.003 and 0.001, respectively.
Plots (d ), (e) and (f ) show likewise for the branch ii solution at ε = 0.09. The contour separations
are 0.01, 0.005 and 0.002. Plots (g), (h) and (i ) are for branch iii at ε = 0.09, with contour intervals
0.01, 0.005 and 0.003.
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three-dimensional stability and found to be linearly unstable. Branches A, B and C
are found to exist for 0.04996 6 ε 6 0.2, ε > 0.09 and ε > 0.2, respectively.

The presence of the first three-dimensional branch (branch A) at low values of ε
indicates that the two-dimensional branch i becomes three-dimensionally unstable very
soon after criticality and certainly before becoming two-dimensionally unstable. This,
of course, further restricts the use of weakly nonlinear theory. Surprisingly, branch
A solutions are less dissipative than the co-existing two-dimensional state. A run at
ε = 0.09 shows the emergence of a new branch B through a continuous bifurcation.
Figure 17 shows how initially the run traces a branch A-like solution for times less
than 1500 rev but then evolves to a more energetic state – branch B. The inserts in
figure 17 show how the frequencies differ between these two branches. Both early
(branch A) and late (branch B) power spectra show that the flows are disordered,
but certain frequencies resembling the primary inertial frequencies still appear to
dominate. Branch B, however, also has two new frequencies of approximately 0.5 and
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1.5. A run at ε = 0.12 traces out a more energetic version of the branch B state
found at ε = 0.09, but unexpectedly a run at ε = 0.14 leads to a stable state clearly
identifiable as being on branch A by its power spectrum. Runs at ε = 0.16 and 0.18
lead to stable branch B solutions.

At ε = 0.20, a new branch C of considerably enhanced dissipation is found to co-
exist with branch A and B states. Figure 18 shows the time series and associated power
spectra inserts for a long (Nx,Ny) = (8, 8) run where it can be seen that the solution
jumps abruptly between the three states at seemingly random times. In terms of
intensity, the different states are clearly ordered as A, B, C with C being most intense.
In terms of frequencies, the branches can also be clearly distinguished: A has the
inertial frequencies with a chaotic modulation, B has extra peaks at approximately
λ = 0.5 and λ = 1.5 and is more broadband, whereas C has its main peaks at
frequencies of 0.5 and integer multiples thereof, although again the frequencies are
largely broadband. Further runs using (Nx,Ny) = (12, 12) and (16, 16) confirm this
behaviour with both showing exactly similar branch states and transitions although
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the points of transition, of course, occurred at differing times. Runs for ε > 0.20
show exactly the same type of behaviour except a branch A state is not now seen.
Figure 19 shows a typical time series for ε = 0.24 where there is chaotic switching
between branches B and C of the flow solution. These switches are sometimes very
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short lived (for example the apparent change to branch C at approximately 4650 rev)
which only last for a few tens of revolutions and sometimes very pronounced (for
example the persistence of branch B from approximately 1500 to 4600 rev).

Figure 20 shows snapshots of the solutions on branches A, B and C for ε = 0.20.
Time is such that the basic state velocity component ubasic has a form εz = 0.2z, and
is therefore bounded by ±0.1. The velocity deviation ũ can be seen to both increase in
magnitude and spatial complexity in going from branch A to branch C. For branch
A (subplots (a) and (b)) the inertial wave structure in the y-direction can be seen in
subplot (b) and generally the perturbation flows are small (10 to 20 times smaller)
compared to the basic state. For branch B (subplots (c) and (d )) the perturbation
flows are again small (5 to 10 times smaller) than the basic state, but not as small as
for branch A. For branch C (subplots (e) and ( f )) the perturbation flows are now only
2 to 4 times smaller than the basic state. These observations are entirely consistent
with increasing intensity I in moving from branches A to C. We also observe that
branch C exhibits finer scales in both x and y than both B and (certainly) A. A final
point to note is that for branch A, the velocities ũ and w̃ are comparable in size,
whereas ũ is typically a factor of 2 larger than w̃ for branches B and C. This indicates
an increased role of the mean flow in the more energetic states B and C.

The increased spatial and temporal complexity of three-dimensional flows raises
important issues of numerical resolution. The smoothness of the contours in fig-
ures 20(a)–20(d ) indicates that the solution branches A and B are well resolved
whereas the situation is less clear for branch C (figure 20e, f ). In figure 21, the
coefficients elmn and Uxn defined in equations (3.4) and (3.6) are plotted against the
Chebyshev index n, for two different levels of truncation Nz = 32 and 48 for branch
A and C-type solutions. The solutions for Nz = 48 were found by taking an initial
condition from Nz = 32, increasing the truncation, and allowing the solution to evolve
over 175 revolutions. Since the spectral decompositions are taken at different times
we expect the coefficients for a given expansion polynomial to be different, but follow
the same general trend as the polynomial index n increases. Figure 21 confirms this
for both branches. This, together with the observation that similar behaviours are
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Figure 20. For caption see facing page.
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Figure 20. Snapshots in the three-dimensional strongly precessing case: E = 5× 10−5. The subplots
are organised into pairs where the left-hand (narrow) plot is a given quantity in the (y, z)-plane

taken as a slice in three-dimensional space at x =
√

2 π/kx, and the right-hand (wider) plot is the

same quantity in the (x, z)-plane taken as a slice in three-dimensional space at y =
√

2 π/ky . (a)
and (b) show ũ and w̃ for the branch A solution at ε = 0.2 and correspond to a time near 5000 rev
from figure 18. (c) and (d ) show likewise for branch B at ε = 0.2 corresponding to a time near
200 rev from figure 18, and (e) and ( f ) are for branch C at ε = 0.2 corresponding to a time near
3000 rev from figure 18. Contour separations are from top-left to bottom-right 0.002, 0.002, 0.001,
0.002, 0.005, 0.005, 0.003, 0.003, 0.01, 0.01, 0.005 and 0.005.
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found for increases in Nx and Ny , is an excellent indication that a truncation level of
Nz = 32 leads to sufficiently resolved velocity fields for all the branches.

The branch-switching dynamics is the new feature to emerge from the three-
dimensional simulations. The clear implication is that precessing flows can exhibit
(chaotic) dynamics over time scales completely unrelated with the fast ‘driving’ fre-
quency. It is also significant that the three-dimensional solutions represent highly
dissipative states (branch C) as is the fact that these states are and remain strong
instabilities: figure 16(b) shows that I = O(1). In general terms, as in the two-
dimensional cases, the selected flows become more efficient in dissipating energy; the
strength of the instability remains fairly constant, but the dissipation still increases as
ε− εcrit increases.

6. Discussion
The results presented in this paper have revealed the presence of rich nonlinear

dynamics in a precessing fluid layer. In the particular situations studied (stress-free
boundary conditions and the two ranges of precession rates ε ∈ [0.09885, 0.028] and
ε ∈ [0.04996, 0.24]), we have found the co-existence of multiple nonlinear states, some
of which are chaotic, and chaotic branch-switching all relatively close to criticality
(ε < 5εcrit). Even at the lower (weak) precession rate range, discontinuous bifurcations
and chaotic states have been found. The general trend seems to be for the flow
to select the most ‘efficient’ dissipative state available to it where ‘efficiency’ has
been loosely defined as some ratio of total dissipation to instability kinetic energy.
Discontinuous bifurcations to chaotic solutions lead to a jump in this efficiency. The
fact that no nonlinear state has been observed here for ε 6 εcrit tends to suggest
that the precessional instability is strictly supercritical. Estimates of the threshold for
instability based upon balancing growth rates with inertial wave viscous decay rates
then provide an accurate indication of when the simple basic flow response may not
be realized.

We have found that weakly nonlinear theory is at best valid only in a small
O(ε2

crit) interval beyond ε = εcrit. This was found numerically by seeing when the
two-dimensional solution branch no longer increased like (ε− εcrit)1/2 away from the
bifurcation point. This scaling may also be argued for on the basis that secondary
instabilities will naturally tend to occur by this point. Two inertial waves can be
expected to take part in a triad resonance with one of the finite amplitude primary
waves if the amplitude of the primary inertial wave is of the same order as a typical
viscous damping rate for a wave, that is (ε − εcrit)1/2 ∼ O(Ek2) ∼ O(εcrit) (Kerswell
1999). This then recovers the same interval size of O(ε2

crit).
One of the stated goals of this paper has been to explore the nonlinear dynamics of

precessional instabilities beyond the secondary instability that is observed in the closely
related ‘elliptical’ situation. In our two-dimensionally-restricted weakly precessing
situation, ε ∈ [0.09885, 0.028], we have confirmed the presence of a supercritical
secondary instability and found that the tertiary bifurcation is an abrupt transition
to a chaotic attractor. This behaviour is in keeping with the Ruelle–Takens (1971)
transition scenario although the final state appears only chaotic in time and therefore
far from turbulent. In the strongly precessing case ε ∈ [0.04996, 0.24], the two-
dimensional flow dynamics seems to switch directly from the primary branch (i) to a
chaotic branch (iv) (branches ii and iii being coincidental). This is probably because
the secondary and tertiary bifurcations occur so close together. Certainly, this seems
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to be the case when the dynamics are allowed to be three-dimensional since the
chaotic branch A exists very near to ε = εcrit.

Given our limited data, the picture which has emerged is that the flow dynamics
tend to assume a chaotic state at the tertiary bifurcation (the ‘Ruelle–Takens’ scenario)
rather than follow a gradual increase in complexity as new frequencies are added
through successive bifurcations (the ‘Landau’ scenario). This then poses the next
question as to how these chaotic states change into turbulent states. Importantly, all
the solutions found in this study remain within O(ε) (in the kinetic energy norm)
of the basic state since I never exceeds 1. Hence, although these can be classed as
‘strong’ instabilities relative to ‘weak’ viscous instabilities where I � 1, it still remains
the case that the nonlinear dynamics revealed here seem too weak to explain the most
dramatic aspects of experimental observations. In the case of contained elliptical
flows (Malkus 1989; Eloy et al. 2000, 2002), the flow can be seen to break down
intermittently to small scales when the elliptical distortion is sufficiently large. These
small scales then decay before the flow relaminarizes. In contrast, a strongly precessed
oblate spheroid seems able to sustain a small-scale flow where the average rotation
axis of the flow is changed completely (Malkus 1968). Both situations clearly indicate
that I must reach values of O(1/ε) since the underlying rotation of the flow is either
temporarily destroyed or tipped over into a new direction. This distinction is crucial
as I = O(1) indicates that the instability is only able to access the energy of the
sheared flow whereas I = O(1/ε) implies that the sheared flow acts like a catalyst to
release energy stored in the underlying rotation.

There seem to be four possibilities for why we have not observed these extreme
solutions. First, and perhaps most likely, the system is not sufficiently nonlinear
or supercritical. Experimental realizations are typically carried out far away from
critical conditions so that things happen quickly and new flows are large enough
to see. It is not unreasonable to imagine that the values of ε studied here are still
not large enough compared to E to see this behaviour. Secondly, it has only been
practical to study a simple form of three-dimensional instability in which one inertial
instability is tuned in. This is an obvious starting point for a first study like this,
but does exclude more complicated dynamics. Generically, if the precession rate is
high enough, many primary instabilities will be simultaneously excited and we can
imagine a more energetic flow response. However, it is pure speculation whether
this would explain the discrepancy. Thirdly, the fact that I remains O(1) may be
an unfortunate feature of adopting a planar geometry. One of the key features of
the experimental observations discussed above is the fact that the flow is seen to
be appreciably despun at some points in time. Unfortunately, this is an inherently
local (or bounded) phenomenon which cannot formally be captured in a planar
model because the growing disturbance is forced to be spatially periodic, whereas
the underlying rotation field is not. This is in some way compensated by allowing
the presence of mean flows, but the fact remains that this is a notable weakness of
using a planar unbounded geometry to model a physically bounded rotating system.
Again, it is unclear whether this is really restricting the dynamics or not. Fourthly,
some crucial physics important for the dramatic experimental observations may be
absent from the study here. The presence of thin viscous shear and boundary layers
is the most obvious omission, however, their instability seems so weak and localized;
values of I2 = Kinst/K 6 0.01 have been reported (Lorenzani & Tilgner 2001; Tilgner
& Busse 2001) compared to values in the range (0.1 − 0.36) for the instabilities here
(see figure 16b). This greater ‘strength’ of the inertial instabilities compared to the
viscous instabilities as well as their global rather than local influence would seem to
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make them favourite for the likely cause of the transition observed in a precessing
oblate spheroid even though there is still this issue of reaching even larger values of
I for the fully turbulent response.

The fact that the flow solution has been found to switch chaotically between
different nonlinear states over long times seemingly unrelated to the fast precessional
frequency is significant for the precessing Earth. The clear implication is that the
precessional stirring of the Earth’s core can produce ‘events’ over very much longer
time scales than the daily period of the precessional effect. The next challenge, of
course, is to understand how the flows described here are modified or suppressed in a
precessing and convecting core. The plane layer model introduced here should prove
a useful arena in which to explore this question. A further question for the future is
whether the discovered chaotic flows could act as dynamos, that is, whether they could
generate a magnetic field if the fluid were electrically conducting. After a period of
cautious scepticism, the current consensus is that any sufficiently complicated, three-
dimensional velocity field should work. However, this remains to be checked and, of
course, also the character of the ensuing magnetic field clarified.

Finally, it is worth re-emphasizing that the complex nonlinear dynamics uncovered
here for the precessing plane layer should be closely analogous with those present
in an elliptical flow. Only the quantitative details of the linear instability mechanism
differ between the two scenarios; qualitatively the instability mechanisms are identical
(e.g. see Kerswell 2002). Beyond the initial flow dominated by the two growing
inertial waves, other mechanisms such as the instability of finite-amplitude inertial
waves (Fabijonas, Holm & Lifschitz 1997; Kerswell 1999) come into play, which
should make the dynamics generic to strained rotating flows.

We are very grateful to Professor C. A. Jones for sharing his optimized fast Fourier
transform routines and to one of the referees who offered many constructive criticisms
which considerably improved this manuscript. Support from NERC (a studentship
for R.M.M.) and The Royal Society (R.R.K.) is gratefully acknowledged.

REFERENCES

Barnes, D. R. & Kerswell, R. R. 2000 New results in rotating Hagen–Poiseuille flow. J. Fluid
Mech. 417, 103–126.

Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739–751.

Eloy, C., Le Gal, P. & Le Dizès, S. 2000 Experimental study of the multipolar vortex instability.
Phys. Rev. Lett. 78, 1900–1903.

Eloy, C., Le Gal, P. & Le Dizès, S. 2002 Elliptic and triangular instabilities in rotating cylinders.
J. Fluid Mech. submitted.

Fabijonas, B., Holm, D. D. & Lifschitz, A. 1997 Secondary instabilities of flows with elliptic
streamlines. Phys. Rev. Lett. 78, 1900–1903.

Gans, R. F. 1970a On the precession of a resonant cylinder. J. Fluid Mech. 41, 865–872.

Gans, R. F. 1970b On the hydromagnetic precession in a cylinder. J. Fluid Mech. 45, 111–130.

Gledzer, E. B., Dolzhansky, F. V., Obukhov, A. M. & Pononmarev, V. M. 1975 An experimental
and theoretical study of the stability of a liquid in an elliptical cylinder. Isv. Atmos. Ocean.
Phys. 11, 617–622.

Gledzer, E. B., Novibov, Y. V., Obukhov, A. M. & Chusov, M. A. 1974 An investigation of the
stability of liquid flows in a three-axis ellipsoid. Isv. Atmos. Ocean. Phys. 10, 69–71.

Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press (reprinted
Breukelen Press, Brookline 1990).

Hollerbach, R. & Kerswell, R. R. 1995 Oscillatory internal shear layers in rotating and precessing
flows. J. Fluid Mech. 298, 327–339.



Chaotic dynamics in a strained rotating flow 105

Jones, C. A. & Roberts, P. H. 2000 Convection-driven dynamos in a rotating plane layer. J. Fluid
Mech. 404, 311–343.

Kerswell, R. R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107–144.

Kerswell, R. R. 1994 Tidal excitation of hydromagnetic waves and their damping in the Earth.
J. Fluid Mech. 274, 219–241.

Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions of oscillatory
Ekman boundary layers. J. Fluid Mech. 298, 311–325.

Kerswell, R. R. 1999 Secondary instabilities in rapidly rotating flows: inertial wave breakdown.
J. Fluid Mech. 382, 283–306.

Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid. Mech. 34, 83–113.

Kerswell, R. R. & Malkus, W. V. R. 1998 Tidal instability as a source for Io’s magnetic field
signature. Geophys. Res. Lett. 25, 603–606.

Kobine, J. J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303,
233–252.

Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptical instability of a vortex
pair. Phys. Fluids 12, 1016–1031.

Lorenzani, S. & Tilgner A. 2001 Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech.
447, 111–128.

Lungren, T. S. & Mansour, N. M. 1996 Transition to turbulence in an elliptical vortex. J. Fluid
Mech. 307, 43–62.

Mahalov, A. 1993 The instability of rotating fluid columns subjected to a weak external Coriolis
force. Phys. Fluids 5, 891–900.

Malkus, W. V. R. 1968 Precession of the Earth as a cause of geomagnetism. Science 169, 259–264.

Malkus, W. V. R. 1989 An experimental study of the global instabilities due to the tidal (elliptical)
distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123–134.

Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech.
243, 261–296.

Manasseh, R. 1994 Distortions of inertia waves in a rotating fluid cylinder forced near its funda-
mental mode resonance. J. Fluid Mech. 265, 345–370.

Manasseh, R. 1996 Nonlinear behaviour of contained inertia waves. J. Fluid Mech. 315, 151–173.

Mason, D. M. & Kerswell, R. R. 1999 Nonlinear evolution of the elliptical instability: an example
of inertial wave breakdown. J. Fluid Mech. 396, 73–108.

Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field.
Proc. R. Soc. Lond. A 346, 413–425.

Noir, J., Jault, D. & Cardin, P. 2001 Numerical study of the motions within a slowly precessing
sphere at low Ekman number. J. Fluid Mech. 437, 283–299.

Pais, M. A. & Le Mouel, J. L. 2001 Precession-induced flows in liquid-filled containers and the
Earth’s core. Geophys. J. Intl 144, 539–554.

Perryman, M. A. C. 2000 Extra-solar planets. Rep. Prog. Phys. 63, 1209–1272.
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